Insulin-like growth factor-1 receptor activation inhibits oxidized LDL-induced cytochrome C release and apoptosis via the phosphatidylinositol 3 kinase/Akt signaling pathway.
نویسندگان
چکیده
OBJECTIVE We have shown previously that oxidized LDL decreases insulin-like growth factor-1 (IGF-1) and IGF-1 receptor expression in vascular smooth muscle cells and that IGF-1 and IGF-1 receptor expression are reduced in the deep intima of early atherosclerotic lesions. Because oxidized LDL is potentially important for the depletion of vascular smooth muscle cells contributing to plaque destabilization, we studied the role of IGF-1 in oxidized LDL-induced apoptosis. METHODS AND RESULTS We provide evidence that oxidized LDL-induced apoptosis is caused by decreased mitochondrial membrane potential and increased cytochrome C release in human aortic vascular smooth muscle cells. Overexpression of the IGF-1 receptor by using an adenovirus completely abrogated these effects. The antiapoptotic function of the IGF-1 receptor was associated with increased Akt kinase activity and increased expression of phosphorylated Bad. Moreover, a dominant-negative p85 phosphatidylinositol 3-kinase adenovirus blocked the capacity of the IGF-1 receptor to prevent oxidized LDL-induced apoptosis. CONCLUSIONS Our data demonstrate that IGF-1 receptor activation inhibits oxidized LDL-induced cytochrome C release and apoptosis through the phosphatidylinositol 3-kinase/Akt signaling pathway and suggest that genetic or pharmacological activation of the IGF-1 receptor may be a useful strategy to stabilize atherosclerotic plaques.
منابع مشابه
B-Raf inhibits programmed cell death downstream of cytochrome c release from mitochondria by activating the MEK/Erk pathway.
Growth factor-dependent kinases, such as phosphatidylinositol 3-kinase (PI 3-kinase) and Raf kinases, have been implicated in the suppression of apoptosis. We have recently established Rat-1 fibroblast cell lines overexpressing B-Raf, leading to activation of the MEK/Erk mitogen-activated protein kinase pathway. Overexpression of B-Raf confers resistance to apoptosis induced by growth factor wi...
متن کاملNeutral endopeptidase inhibits neuropeptide-mediated transactivation of the insulin-like growth factor receptor-Akt cell survival pathway.
G-protein coupled receptor (GPCR) agonists such as neuropeptides activate the insulin-like growth factor-1 receptor (IGF-IR) or the serine-threonine protein kinase Akt, suggesting that neuropeptides-GPCR signaling can cross-communicate with IGF-IR-Akt signaling pathways. Neutral endopeptidase 24.11 (NEP) is a cell-surface peptidase that cleaves and inactivates the neuropeptides endothelin-1 (ET...
متن کاملEupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway
Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...
متن کاملIGF-1 protects SH-SY5Y cells against MPP+-induced apoptosis via PI3K/PDK-1/Akt pathway
Insulin-like growth factor (IGF)-1 is a well-known anti-apoptotic pro-survival factor and phosphatidylinositol-3-kinase (PI3K)/Akt pathway is linked to cell survival induced by IGF-1. It is also reported that Akt signaling is modulated by 3-phosphoinositide-dependent kinase-1 (PDK1). In the current study, we investigated whether the anti-apoptotic effect of IGF-1 in SH-SY5Y cells exposed to 1-m...
متن کاملC5b-9 terminal complement complex protects oligodendrocytes from death by regulating Bad through phosphatidylinositol 3-kinase/Akt pathway.
Apoptosis of oligodendrocytes is induced by serum growth factor deprivation. We showed that oligodendrocytes and progenitor cells respond to serum withdrawal by a rapid decline of Bcl-2 mRNA expression and caspase-3-dependent apoptotic death. Sublytic assembly of membrane-inserted terminal complement complexes consisting of C5b, C6, C7, C8, and C9 proteins (C5b-9) inhibits caspase-3 activation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 23 12 شماره
صفحات -
تاریخ انتشار 2003